一、导数的四种表达形式?
有三种表达形式:
第一种:f '(x0)=lim[x→x0] [f(x)-f(x0)]/(x-x0);
第二种:f '(x0)=lim[h→0] [f(x0+h)-f(x0)]/h;
第三种:f '(x0)=lim [Δx→0] Δy/Δx。导数也叫导函数值,又名微商,是微积分中的重要基础概念。
导数:
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
二、y的四阶导数如何表示
y的四阶导数为y^(4),其中^这里表示上标的意思。
导数的表达式:
一、用'表示一阶导数,''表示二阶导数,(n)表示n阶导数,如 y'表示y的一阶导数, y''表示y的二阶导数,表示简洁,但不容易知道对谁求导,且只能对一个变量进行求导。
二、用d表示,dy/dx表示y对x求导,可以对多个变量求导。
三、偏导数符号,形状像倒写的e,求导时把其他无关的符号当做常量处理。
导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近,例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
三、导数表示法里的“d”是什么符号?有什么意义?怎么读?
d -- 英文导数或微分、微商的字头,比如 dx、du表示x、u的微分
微分的英文--diffrential equation(微分方程)
du(x)/dx -- 函数u(x)对x的导数
若:u(x) = sinx 那么:dsinx/dx = cosx
函数的微商或导数表示函数的变化率。
读一些英文书籍上面都有的
四、复合函数求导法则的三种表示方法?
假设我们要求f(g(x))对x的导数,且f(g(x))和g(x)均可导。则f'(g(x))=f'(g(x))·g'(x);dy/dx=f'(g(x))·g'(x);Y'x=Y'(gx).g'x